CORE MATHEMATICS (C) UNIT 2 TEST PAPER 7

1. Find the remainder when $(x^4 - 3x^3 + 2x - 1)$ is divided by (x + 1).

[3]

2. The diagram shows an isosceles triangle ABC whose equal sides are $2\sqrt{2}$ cm long and a sector OPQ of a circle of radius r cm. Angle BAC = angle $POQ = \frac{\pi}{4}$ radians.

Given that the triangle and the sector have equal areas, find r correct to 2 decimal places. [4]

- 3. (i) Find $\int (3x-1)^2 dx$. [4]
 - (ii) Hence write down two possible functions f(x) such that $f'(x) = (3x 1)^2$. [2]
- 4. In the binomial expansion of $\left(2x + \frac{1}{2x}\right)^6$ in descending powers of x, find in their simplest form
 - (i) the first two terms, [4]
 - (ii) the term which is independent of x. [3]
- 5. In the triangle XYZ, XY = (x + 1) cm, YZ = x cm and XZ = y cm. Angle $XYZ = 120^{\circ}$.
 - (i) Show that $y^2 = 3x^2 + 3x + 1$. [3]
 - (ii) When x = 7, find the size of angle XZY, in degrees to 1 decimal place. [4]
- 6. (i) A car is bought for £12,000. Each year, its value decreases by 15%.
 Show that the values of the car in successive years form a geometric sequence, and find the value of the car after 12 years, to the nearest pound.
 [4]
 - (ii) Find the exact value of $\sum_{r=1}^{15} (7-3r).$ [3]

CORE MATHEMATICS 2 (C) TEST PAPER 7 Page 2

- 7. (i) Solve for x the equation 2 log₁₀ 5 + log₁₀ (10 x) = 3 + log₁₀ x, giving your answer as an exact fraction.
 - (ii) By substituting $y = 2^x$, or otherwise, find to 1 decimal place the value of x for which $2^{2x+1} 2^{x+2} = 6.$ [5]
- 8. (i) Find, to 1 decimal place, the values of x between -180 and 180 for which $\cos 2x^{\circ} = 0.35$. [3]
 - (ii) Given that $\sin \theta = \frac{15}{17}$ and $-180^{\circ} < \theta < 180^{\circ}$, find the possible values of

 (a) $\cos \theta$, (b) $\tan \theta$. [4]
 - (iii) Show that the equation $3\cos^2 x = 2(\sin x + 1)$ can be written as a quadratic equation in $\sin x$. Hence solve this equation for $0 \le x \le 2\pi$, giving your answers in radians to two decimal places. [5]
- 9. The equation of a curve C is $y = x^3 4x^2 + 5x 2$.
 - (i) Show that y = 0 when x = 1. Hence express y as the product of three linear factors. [4]
 - (ii) Calculate the coordinates of the turning points of C, identifying each as a maximum or a minimum. [5]
 - (iii) Sketch the curve C, clearly showing the turning points and any points of intersection with the axes.
 - (iv) Find the area of the finite region contained between C and the x-axis. [4]

CORE MATHS 2 (C) TEST PAPER 7: ANSWERS AND MARK SCHEME

1. Remainder =
$$f(-1) = 1 + 3 - 2 - 1 = 1$$

2.
$$4 \sin \pi/4 = \frac{1}{2} r^2 (\pi/4)$$

$$r^2 = 16\sqrt{2} / \pi$$

$$r = 2.68$$

3. (i)
$$\int (9x^2 - 6x + 1) dx = 3x^3 - 3x^2 + x + c$$

(ii) e.g.
$$3x^3 - 3x^2 + x$$
, $3x^3 - 3x^2 + x + 1$

7

7

7

10

4

4. (i)
$$\left(2x + \frac{1}{2x}\right)^6 = (2x)^6 + 6(2x)^5 \left(\frac{1}{2x}\right) + \dots = 64x^6 + 96x^4 + \dots$$

(ii) Term is
$$\binom{6}{3} (2x)^3 \left(\frac{1}{2x}\right)^3 = 20$$

5. (i) By cosine rule,
$$y^2 = x^2 + (x+1)^2 - 2x(x+1)(-1/2) = 3x^2 + 3x + 1$$

(ii) When
$$x = 7$$
, $y^2 = 169$ so $y = 13$ $\sin Z / 8 = \sin 120^\circ / 13$

$$78 = \sin 120^{\circ} / 13$$
 B1 M1

$$\sin Z = 0.533$$
 Angle $XZY = 32.2^{\circ}$

6. (i) Each year's value is 0.85 times the previous years, hence geometric B2
$$\pounds12.000 \times 0.85^{12} = £1707$$
 M1

x = 10/41

(ii)
$$4+1+...+(-38)=15(4-38)/2=15(-17)=-255$$

(i) $\log_{10} 25(10-x) = \log_{10} 1000 + \log_{10} x$

$$1025x = 250$$
(ii) $2y^2 - 4y - 6 = 0$

$$2(y+1)(y-3)=0$$

$$2^x = -1 \text{ (impossible) or } 2^x = 3$$

$$x = \log_2 3 = 1.6$$

8. (i)
$$2x = \pm 69.51, \pm 290.49$$

$$x = \pm 34.8, \pm 145.2$$

(ii) Using 8, 15, 17 triangle, (i)
$$\cos \theta = \pm 8/17$$
, (ii) $\tan \theta = \pm 15/8$

(iii)
$$3(1-\sin^2 x) = 2(\sin x + 1)$$

$$3\sin^2 x + 2\sin x - 1 = 0$$

250 - 25x = 1000x

$$(3\sin x - 1)(\sin x + 1) = 0$$

$$\ln x = 1/3 \text{ or } -1$$

$$\sin x = 1/3 \text{ or } -1$$
 $x = 0.34, 2.80, 4.71$ M1 A1 A1

9. (i) When
$$x = 1$$
, $y = 1 - 4 + 5 - 2 = 0$

$$y = (x-1)(x^2 - 3x + 2) = (x-1)(x-1)(x-2)$$

(ii)
$$dy/dx = 3x^2 - 8x + 5 = (3x - 5)(x - 1) = 0$$
 when $x = 1$, $x = 5/3$

T.P.s are
$$(1, 0)$$
 maximum, $(5/3, -4/27)$ minimum

(iii) Curve sketched, cutting y-axis at
$$(0, -2)$$
 and touching x-axis at $(1, 0)$

(iv)
$$\int_{1}^{2} y \, dx = \left[\frac{x^4}{4} - \frac{4x^3}{3} + \frac{5x^2}{2} - 2x \right]^2 = \frac{15}{4} - \frac{28}{3} + \frac{15}{2} - 2 = -\frac{1}{12}$$
 Area = $\frac{1}{12}$ M1 A1 M1 A1 16